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BACKGROUND
* The effects of substantial genetic variant data, especially their links to diseases, are often unclear.

* Pioneering “gold standard” methods to quantify the effects of these variants rely primarily on gene/protein sequences,
showing limited performance and a bias on the deleterious variants.

* Here, we present a machine learning-based approach which uses computational structural and biophysical tools to better
predict clinical pathogenicity caused by missense mutations.
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CONCLUSION ; R
CONTACT

 Our structure-based mutation analysis can accurately characterise the pathogenic missense variants
towards cancer and Alzheimer’s Disease.

 Feature interpretation offers not only a better understanding on machine learning but different biological
Insights, such as protein stability and local mutation environment.
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