Systematic evaluation of computational tools to identify potential
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Can we use Al programs to model protein structures and study the effect of
mutations in drug resistance?

*Drug resistance caused by mutations, especially in many 1.Molecular Docking 2. Computational mutagenesis
Use Al program to generate biological molecules Study the effect of mutations with state-of-the-art methods

rap|d|y'eVO|Ved SyStemS SUCh asS VlruseS and baCterla, raISGS models in different binding modes. using Al-generated molecular models as inputs.
significant global health concerns. ’
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3. Performance evaluation

Fig 1. Effect of mutations on drug binding

Evaluate the performance deterioration on different inputs.

Performance

‘Whlle many researCherS Incorporate ArtifiCiaI Inte"igence Provide guidelines for researchers to better use and interpret
(AI) programs ||ke A|phaFO|d2 .to StUdy mUtat|0nS and dl’ug the results when using Al-generated molecular models.
resistance, there is no systematic assessment on the methods

to identify potential drug resistant mutations without using ex-
perimental structures. Fig 2. Methodology: research analysis workflow
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Yes we can, but we need to pay attention to ...
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Fig 3. Predictive performance of methods to identify potential drug resistant mutations when taking recall
Al-generated molecules as inputs. Fig 4. Area Under Precision-Recall Curve (AUPRC)

Potential application

* This work could provide fundamental guidelines for better interpretation on the predictions of current methods when using Al-generated
protein-ligand complexes as inputs to characterise potential drug-resistant mutations

* Our study may provide new insights to improve drug efficacy and stewardship.
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