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CONCLUSION
• By integrating structure-based features, our models accurately characterise the oncogenic effects of all possible missense mutations in p53 and identify 
  missense mutations increasing risks of Alzheimer’s Disease, with a comparable performance to state-of-the-art methods.
• The mutation analysis of p53 offers clinical diagnostic utility, which is crucial for patient monitoring, and the development of personalised cancer treatment.
• Our multi-gene studies on AD not only provide clinically relevant tools, but also a better foundation to understand the protein sequence-structure-function-patho-

genicity relationships.
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BACKGROUND
• Proteins control most fundamental cellular and biological processes, but small changes in the protein sequence 

can alter these tightly regulated functions, and may be associated with a wide range of diseases.

• It is time-consuming to experimentally experimentally elucidate the effects of all possible missense variants.
• Pioneering “gold standard” methods to quantify the effect of these variants rely primarily on gene/protein 
  sequences, showing limited performance and a bias on the deleterious variants.
• To improve the capability of characterising missense mutations, we aimed to develop next-generation in-silico 

tools by leveraging protein information from both sequence and structure.
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CASE 2: mutations leading to Alzheimer’s Disease
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• Feature interpretation reveals that intact p53 
function is strongly reliant on experimental 
residue activity, the number of polar-polar 
atom pairs within 6 Å, and the change of 
protein stability upon mutation

• 680 missense mutations of 
21 proteins related to AD 
were collected from different 
databases.

• Mutation with different pheno-
types were highly imbalanced 
in protein level.

Distribution of neutral mutations Distribution of AD-causing mutations

Machine learning analysis
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• By tunning the sample weights during 
the training process, we improved the 
ability of identify pathogenic mutations 
into protein-specific level.

• Feature interpretation presented both the 
sequenced and structural residue 

• environment, residue interaction, and 
the properties of mutant are essential to 
the risk of Alzheimer’s Disease.

Mutation distribution of p53

• Non-functional muta-
tions mainly distrbuted 
in the DNA-binding 
domain and 

  sporadically distributed 
in the Oligomerization 
domain.
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MCC: Matthew’s Correlation Coefficient / Recall: True positive rate / Precision:1 - False discovery rate
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• Our model showed 
robust performance 
on both blind test and 
clinical vaidation.
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• Over 50% of cancers are associated with the missense mutations in tumour suppressor protein p53.
• p53 plays a crucial role in DNA damage-induced activation by repairing erroneous replication and activating 

cellular apotosis.

• Alzheimer’s Disease (AD) is one of the most common neurodegenerative disease.

Mutation distribution of a multi-gene dataset

CASE 1: mutations leading to cancer


