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* This work provides a detailed gquideline for in silico mu-
tation analysis, which will assist users in appropriately

using non-experimental models, such as AlphaFold2 o8 &
models, on protein engineering and drug development. 0§ AAG = AG™ — AG™
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Introduction

-AIpthoIdZ and_Other methods for F_)mtem modelling Computational methods to estimate protein-ligand
provide substantial resources of protein structures. SO, binding affinity changes upon mutations

 Direct methods: mCSM-lig, PremPLlI
 Scoring functions: AutoDock Vina, RFscore, NNscore, PLEC fin-
RF,,

* However, there is no systematic evaluation of the reli-
ability of current computational biophysical measure-
ments in the absence of experiment-determined
structure.
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3 Protein-ligand B ' AAGym = AGE, — AGP,
* We have, therefore, systematically investigated the . complex AL

performance and robustness of widely used structural
methods to predict the effect of mutations on protein
stability and protein-ligand binding affinity when « We modelled the protein structures and protein-ligand complexes, and put these non-experimental
presented with these non-experimental models. models to evaluate the performance of computational biophysical measurements.
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Distribution of datasets to assess stability changes
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#Drug-resistant: 183
#Susceptible: 608
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* An imbalanced distribution of the phenotypes of drug-resistance was observed
on this dataset (a).

* The higher the target-template identity is, the more similar the homology » Our docking pipeline showed an expected successful rate, with around 20%
models with the experimental structures will be (b). docked ligand which has an RMSD lower than 2A (b).
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» Datasets share similar distribution of AAG values (a).

Overall performance on assessing stability changes Overall performance on assessing binding affinity changes
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* In general, the predictive performance of the evaluated methods increases with . We observed a small performance deterioration when the direct methods
target-template identity (a). were presented with AlphaFold2 models and homology models with high
 Alternatively, we observed a consistent performance deterioration for all sequence identity, compared with the baseline (a).
structure-based methods, particularly in machine learning based methods - There is a large performance drop when using homology models with low
and FoldX, when the sequence identity of the homology modelling template sequence identity as inputs.

dropped. * The scoring functions may not be suitable to estimate the effect of mutation

* Performance of most methods on AlphaFold2 models is close to those obtained on protein-ligand binding affinity changes (b).
on experimental structures (b).




