
Introduction
• AlphaFold2 and other methods for protein modelling 
provide substantial resources of protein structures.

• However, there is no systematic evaluation of the reli-
ability of current computational biophysical measure-
ments in the absence of experiment-determined 
structure.

• We have, therefore, systematically investigated the 
performance and robustness of widely used structural 
methods to predict the effect of mutations on protein 
stability and protein-ligand binding affinity when 
presented with these non-experimental models.
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Highlights
• We present the first systematic study assessing how 
methods to predict effect of mutations on stability 
changes and protein-ligand binding affinity cope in the 
absence of high-resolution experimental protein struc-
tures.

• This work provides a detailed guideline for in silico mu-
tation analysis, which will assist users in appropriately 
using non-experimental models, such as AlphaFold2 
models, on protein engineering and drug development.

• We modelled the protein structures and protein-ligand complexes, and put these non-experimental 
models to evaluate the performance of computational biophysical measurements.

Protein modelling and mutation analysis
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Computational methods to estimate protein-ligand 
binding affinity changes upon mutations
• Direct methods: mCSM-lig, PremPLI
• Scoring functions: AutoDock Vina, RFscore, NNscore, PLEC fin-

gerprints, ΔvinaRF20 

Computational methods to estimate stability 
changes upon mutations:
• Energy-based and dynamics: FoldX, ENCoM
• Knowledge-based and statistical: SDM, DDGun
• Machine learning: I-Mutant 2.0, MAESTRO, mCSM-Stability, 

DUET, DynaMut1, DynaMut2
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Overall performance on assessing stability changes

• In general, the predictive performance of the evaluated methods increases with 
target-template identity (a). 

• Alternatively, we observed a consistent performance deterioration for all 
structure-based methods, particularly in machine learning based methods 
and FoldX, when the sequence identity of the homology modelling template 
dropped.

• Performance of most methods on AlphaFold2 models is close to those obtained 
on experimental structures (b).

R: Pearson’s Correlation Coefficient 
between actual and predicted values

ML: Machine learning

Overall performance on assessing binding affinity changes

• We observed a small performance deterioration when the direct methods 
were presented with AlphaFold2 models and homology models with high 
sequence identity, compared with the baseline (a). 

• There is a large performance drop when using homology models with low 
sequence identity as inputs.

• The scoring functions may not be suitable to estimate the effect of mutation 
on protein-ligand binding affinity changes (b).

Distribution of datasets to assess binding affinity changes

• An imbalanced distribution of the phenotypes of drug-resistance was observed 
on this dataset (a).

• Our docking pipeline showed an expected successful rate, with around 20% 
docked ligand which has an RMSD lower than 2Å (b).
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#Susceptible: 
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Distribution of datasets to assess stability changes

• Datasets share similar distribution of ΔΔG values (a).
• The higher the target-template identity is, the more similar the homology 

models with the experimental structures will be (b).
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