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•Pathogenic missense muta�ons significantly disrupt protein stability, interac�on, and func�on, while benign muta�ons bring mild effect to protein structures. 
•Previous variant effect predictors primarily focus on effect of muta�on on protein sequence and conserva�on. 
•AlphaFold results in a wealth of protein structures, but these predicted structures have not been validated to study the effect of muta�ons.
•In this work, we studied the structural consequences caused by muta�ons, and used these features to develop a machine learning model to classify pathogenic 

outcome. 

Introduc�on

•It is generally reliable to use AlphaFold models to study 
the structral consequences of missense muta�ons.

•Characterising missense variants in structural context 
can provide a molecular evidence of their effect on 
protein, and the poten�al disease associa�on.

•Incorpora�ng structural features for machine learning 
model development improve predic�ve performance 
and generalisability to iden�fy pathogenic variants.
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•Machine learning-based methods present reliable performance when 
using homology models with target-template iden�ty down to 40%.

•Performance on AlphaFold2 models is comparable to performance using 
experimental structures.

1. Homology modelling is reliable to study change of protein stability!

•There is around 5% deteriora�on when the input complexes were composed of 
experimental receptors and docked ligands. 

•The performance deteriorated by 10-20% when we used AlphaFold2-based 
models as receptors to generate protein-ligand complexes, 

•Which is comparable to tradi�onal homology modelling-based analysis. 

2. Using AlphaFold for ligand interac�on is NOT as good as expected!
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3. Strucutral features enable robust predic�on of cancer muta�ons!
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•Oncogenic muta�ons significantly 
destabilise both monomeric and 
tetricmeric p53 structure.

•The change of stability is mainly 
caused by the loss of intramolecular 
interac�ons. 
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•Our strucutre-based method 
presents robust performance 
on both blind test and clinical 
valida�on. 

Method MCC
Blind test Clinical test

0.88 0.83Our model
0.78 0.82AlphaMissense
0.46 0.58SIFT

Experiment 0.87 0.69
PolyPhen2 0.42 0.47

•Pathogenic muta�ons in AD also decrease 
protein stability, showing some common 
underlying disease mechanism. 
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4. Structural features improve accurate iden�fica�on of Alzheimer’s Disease!

h�ps://biosig.lab.uq.edu.au/alzdiscovery/

•Our model outperformed other state-of-the-art 
methods, par�cularly in clinical test.

•Researchers can freely access the predic�ons of 
all the possible missense muta�ons via our web 
server.

Method AUC
Blind test Clinical test

0.95 0.70Our model
0.55 0.54Alz-Disc
0.88 0.40AlphaMissense

SNAP2 0.77 0.54
SIFT 0.51 0.61
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