# Harnessing AlphaFold and explainable Al to better characterise human missense variants and diseases

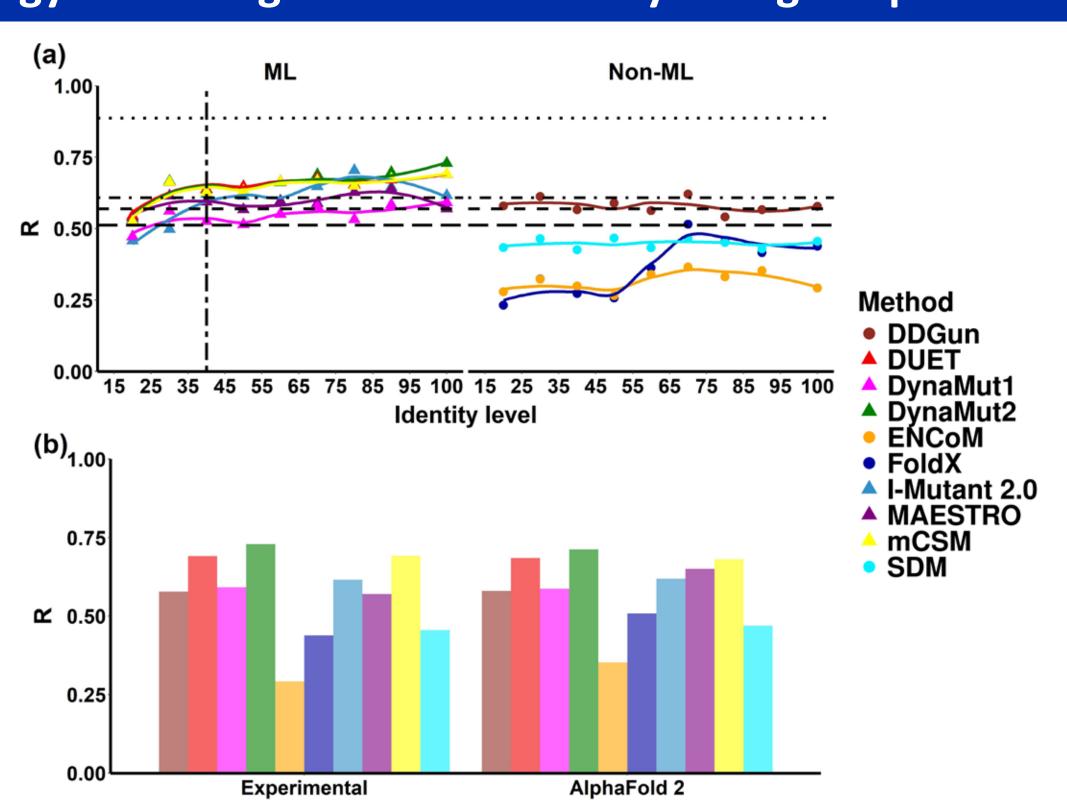
Qisheng Pan<sup>1,2</sup>, Stephanie Portelli<sup>1,2</sup>, Thanh Binh Nguyen<sup>1,2</sup>, David B. Ascher<sup>1,2</sup>

<sup>1</sup>School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia <sup>2</sup>Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia

#### Introduction

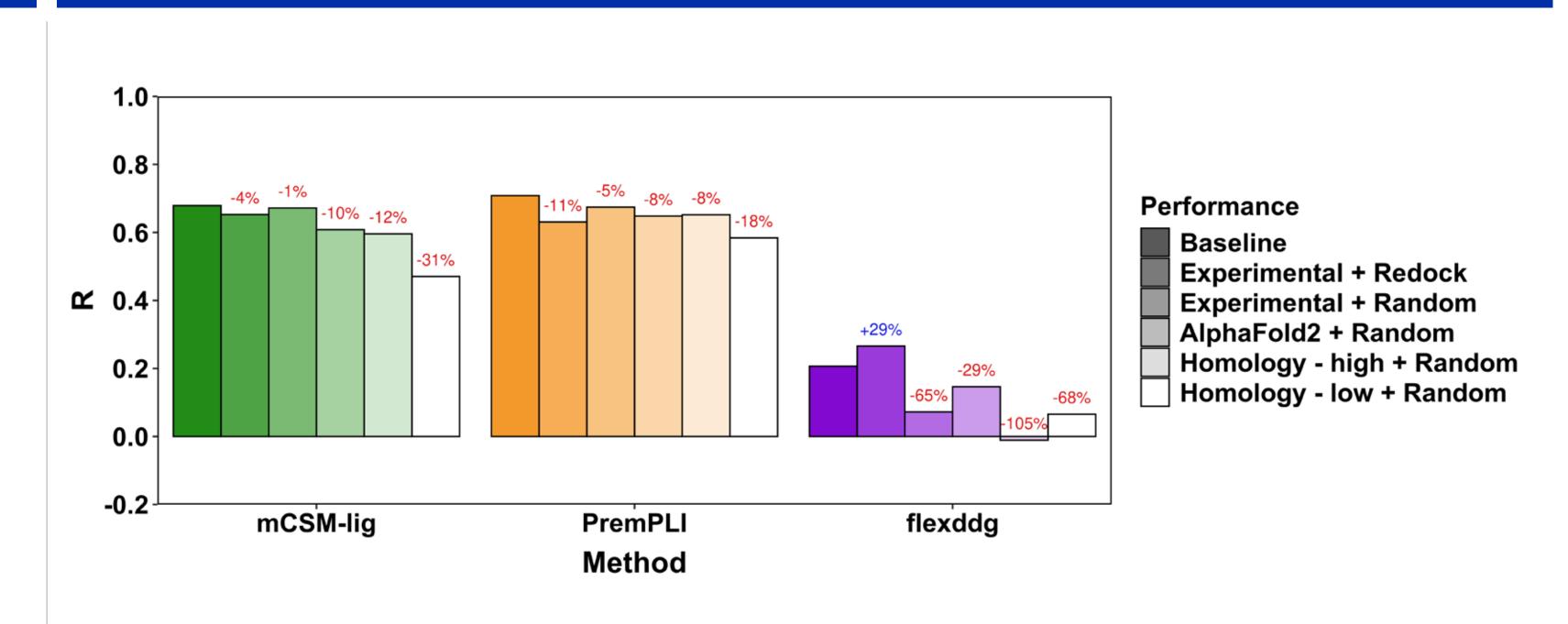
- Pathogenic missense mutations significantly disrupt protein stability, interaction, and function, while benign mutations bring mild effect to protein structures.
- Previous variant effect predictors primarily focus on effect of mutation on protein sequence and conservation.
- •AlphaFold results in a wealth of protein structures, but these predicted structures have not been validated to study the effect of mutations.
- •In this work, we studied the structural consequences caused by mutations, and used these features to develop a machine learning model to classify pathogenic outcome.

## 1. Homology modelling is reliable to study change of protein stability!



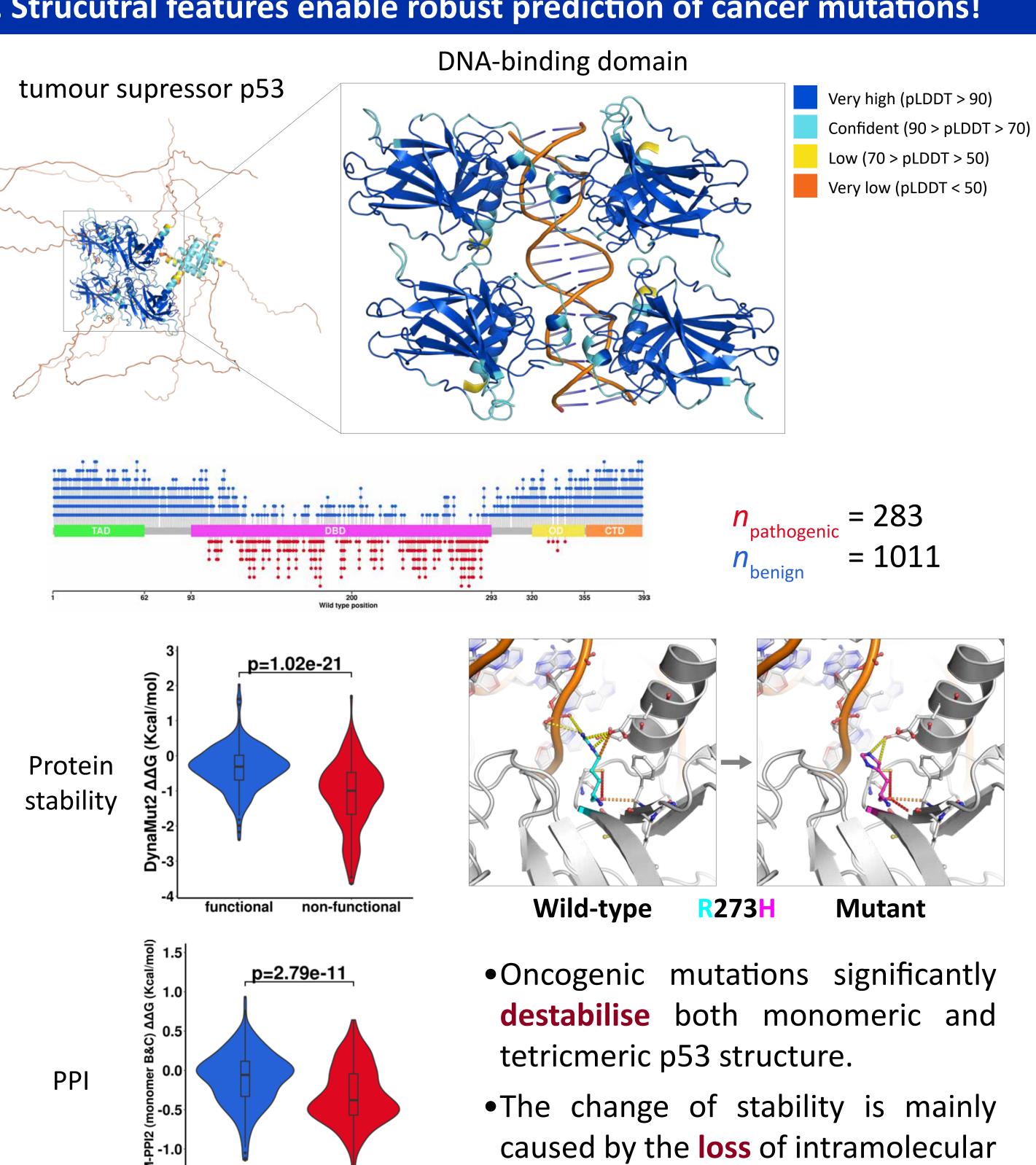
- Machine learning-based methods present reliable performance when using homology models with target-template identity down to 40%.
- Performance on AlphaFold2 models is comparable to performance using experimental structures.

# 2. Using AlphaFold for ligand interaction is NOT as good as expected!



- •There is around 5% deterioration when the input complexes were composed of experimental receptors and docked ligands.
- •The performance deteriorated by 10-20% when we used AlphaFold2-based models as receptors to generate protein-ligand complexes,
- Which is comparable to traditional homology modelling-based analysis.

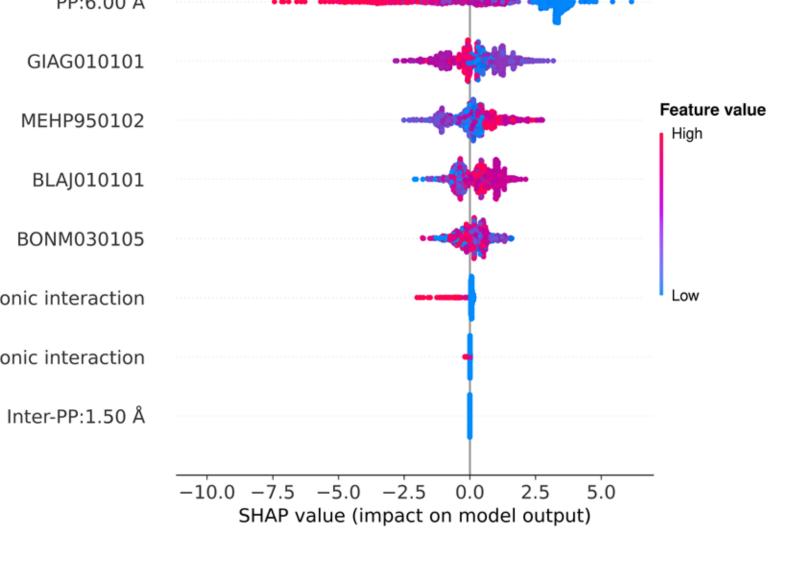
## 3. Strucutral features enable robust prediction of cancer mutations!



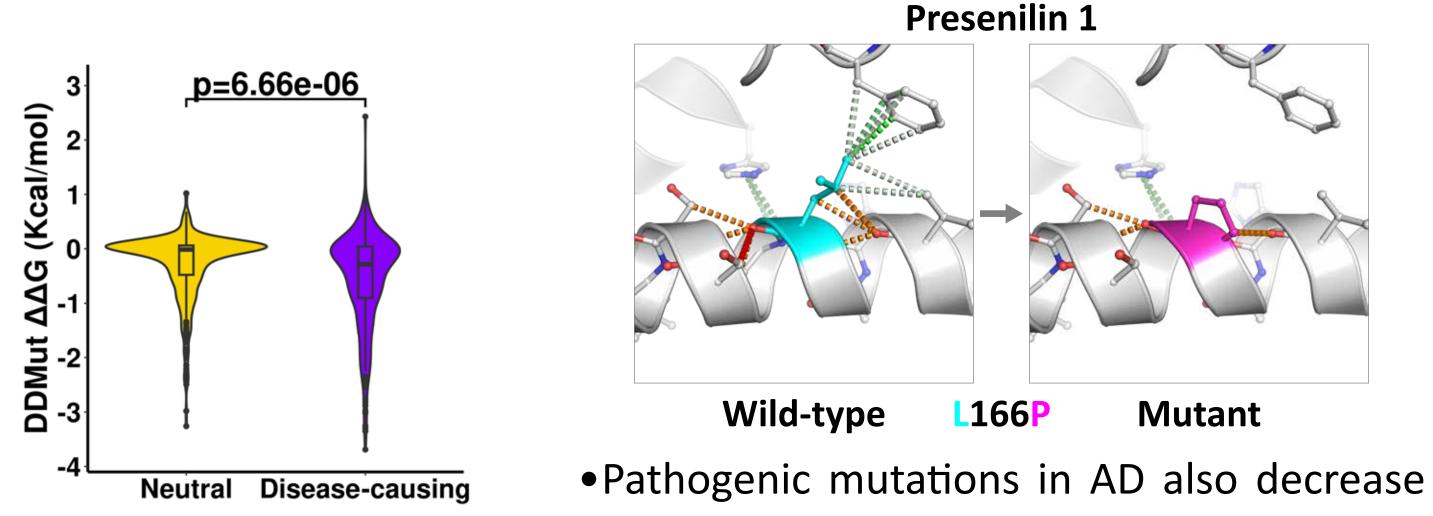
| Method                      | MCC        |               | experimental assay |                 |
|-----------------------------|------------|---------------|--------------------|-----------------|
|                             | Blind test | Clinical test | PP:6.00 Å          |                 |
| Our model                   | 0.88       | 0.83          | GIAG010101         | an Africa and a |
| AlphaMissense               | 0.78       | 0.82          |                    |                 |
| SIFT                        | 0.46       | 0.58          | MEHP950102         |                 |
| PolyPhen2                   | 0.42       | 0.47          | BLAJ010101         |                 |
| Experiment                  | 0.87       | 0.69          | BLAJOIOIOI         |                 |
|                             |            |               | BONM030105         | •               |
| Our strucutre-based method  |            |               | ionic interaction  |                 |
| presents robust performance |            |               | Δionic interaction |                 |

interactions.

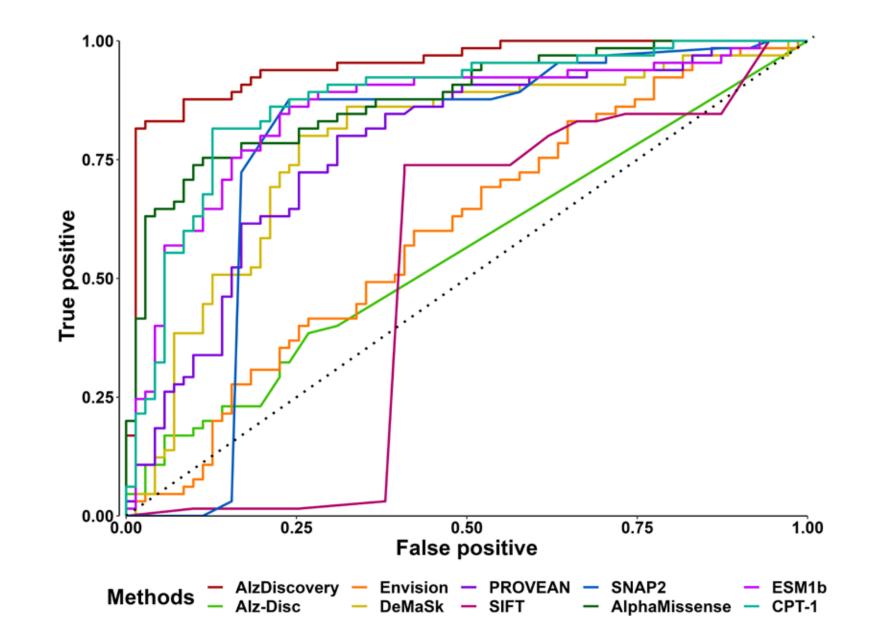
on both blind test and clinical validation.



## 4. Structural features improve accurate identification of Alzheimer's Disease!



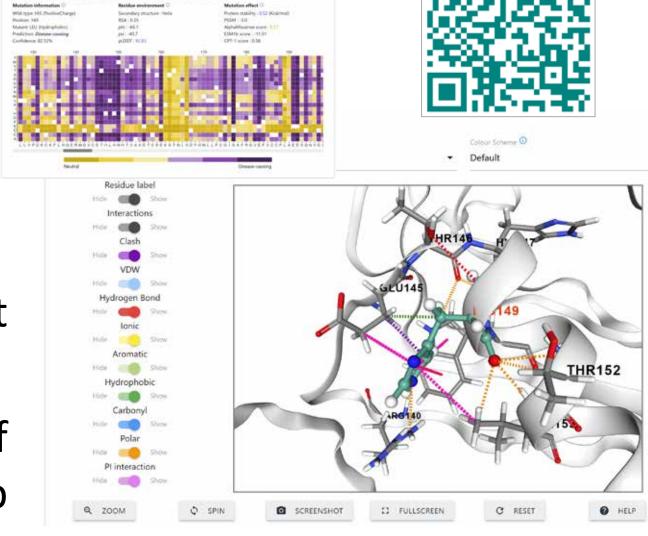
protein stability, showing some common underlying disease mechanism.



Protein stability

| AUC        |                              |  |  |
|------------|------------------------------|--|--|
| Blind test | Clinical test                |  |  |
| 0.95       | 0.70                         |  |  |
| 0.55       | 0.54                         |  |  |
| 0.88       | 0.40                         |  |  |
| 0.51       | 0.61                         |  |  |
| 0.77       | 0.54                         |  |  |
|            | 0.95<br>0.55<br>0.88<br>0.51 |  |  |

**AUC** 



 Our model outperformed other state-of-the-art methods, particularly in clinical test.

 Researchers can freely access the predictions of all the possible missense mutations via our web server.

https://biosig.lab.uq.edu.au/alzdiscovery/

## Summary

- It is **generally reliable** to use AlphaFold models to study the structral consequences of missense mutations.
- Characterising missense variants in structural context can provide a molecular evidence of their effect on protein, and the potential disease association.
- Incorporating structural features for machine learning model development improve predictive performance and **generalisability** to identify pathogenic variants.







Find out more about me