Harnessing AlphaFold and explainable Al to better characterise human missense variants and diseases

Qisheng Pan^{1,2}, Stephanie Portelli^{1,2}, Thanh Binh Nguyen^{1,2}, David B. Ascher^{1,2}

¹School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia ²Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia

Introduction

- Pathogenic missense mutations significantly disrupt protein stability, interaction, and function, while benign mutations bring mild effect to protein structures.
- Previous variant effect predictors primarily focus on effect of mutation on protein sequence and conservation.
- •AlphaFold results in a wealth of protein structures, but these predicted structures have not been validated to study the effect of mutations.
- •In this work, we studied the structural consequences caused by mutations, and used these features to develop a machine learning model to classify pathogenic outcome.

1. Homology modelling is reliable to study change of protein stability!

- Machine learning-based methods present reliable performance when using homology models with target-template identity down to 40%.
- Performance on AlphaFold2 models is comparable to performance using experimental structures.

2. Using AlphaFold for ligand interaction is NOT as good as expected!

- •There is around 5% deterioration when the input complexes were composed of experimental receptors and docked ligands.
- •The performance deteriorated by 10-20% when we used AlphaFold2-based models as receptors to generate protein-ligand complexes,
- Which is comparable to traditional homology modelling-based analysis.

3. Strucutral features enable robust prediction of cancer mutations!

Method	MCC		experimental assay	
	Blind test	Clinical test	PP:6.00 Å	
Our model	0.88	0.83	GIAG010101	an Africa and a
AlphaMissense	0.78	0.82		
SIFT	0.46	0.58	MEHP950102	
PolyPhen2	0.42	0.47	BLAJ010101	
Experiment	0.87	0.69	BLAJOIOIOI	
			BONM030105	•
Our strucutre-based method			ionic interaction	
presents robust performance			Δionic interaction	

interactions.

on both blind test and clinical validation.

4. Structural features improve accurate identification of Alzheimer's Disease!

protein stability, showing some common underlying disease mechanism.

Protein stability

AUC			
Blind test	Clinical test		
0.95	0.70		
0.55	0.54		
0.88	0.40		
0.51	0.61		
0.77	0.54		
	0.95 0.55 0.88 0.51		

AUC

 Our model outperformed other state-of-the-art methods, particularly in clinical test.

 Researchers can freely access the predictions of all the possible missense mutations via our web server.

https://biosig.lab.uq.edu.au/alzdiscovery/

Summary

- It is **generally reliable** to use AlphaFold models to study the structral consequences of missense mutations.
- Characterising missense variants in structural context can provide a molecular evidence of their effect on protein, and the potential disease association.
- Incorporating structural features for machine learning model development improve predictive performance and **generalisability** to identify pathogenic variants.

Find out more about me