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Introduction
ePathogenic missense mutations significantly disrupt protein stability, interaction, and function, while benign mutations bring mild effect to protein structures.
ePrevious variant effect predictors primarily focus on effect of mutation on protein sequence and conservation.

e AlphaFold results in a wealth of protein structures, but these predicted structures have not been validated to study the effect of mutations.

eIn this work, we studied the structural consequences caused by mutations, and used these features to develop a machine learning model to classify pathogenic
outcome.

1. Homology modelling is reliable to study change of protein stability! 2. Using AlphaFold for ligand interaction is NOT as good as expected!
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eMachine learning-based methods present reliable performance when experimental receptors and docked ligands.

using homology models with target-template identity down to 40%. eThe performance deteriorated by 10-20% when we used AlphaFold2-based
models as receptors to generate protein-ligand complexes,

ePerformance on AlphaFold2 models is comparable to performance using
experimental structures. *\Which is comparable to traditional homology modelling-based analysis.

3. Strucutral features enable robust prediction of cancer mutations! 4. Structural features improve accurate identification of Alzheimer’s Disease!
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can provide a molecular evidence of their effect on
protein, and the potential disease association.
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